
11/6/2007 1

CSE P503:

Principles of

Software

Engineering

David Notkin

Autumn 2007

Evolution

There is in the worst of fortune the best of

chances for a happy change.

--Euripides

He who cannot dance will say, ―The drum is bad

--Ashanti proverb

The ruling power within, when it is in its natural

state, is so related to outer circumstances that it

easily changes to accord with what can be done

and what is given it to do

--Marcus Aurelius

11/6/2007 2

Software evolution

• Software changes

– Software maintenance

– Software evolution

– Incremental development

• The objective is to use an existing code base as an

asset

– Cheaper and better to get there from here, rather

than starting from scratch

– Anyway, where would you aim for with a new

system?

11/6/2007 3

A legacy

• Merriam-Webster on-line dictionary

– ―a gift by will especially of money or other personal

property‖

– ―something transmitted by or received from an

ancestor or predecessor or from the past‖

• The usual joke is that in anything but software, you’d

love to receive a legacy

– Maybe we feel the same way about inheritance,

too, especially multiple inheritance

11/6/2007 4

Why does it change?

• Software changes does not change primarily because

it doesn’t work right

– Maintenance in software is different than

maintenance for automobiles

• But rather because the technological, economic, and

societal environment in which it is embedded changes

• This provides a feedback loop to the software

– The software is usually the most malleable link in

the chain, hence it tends to change

• Counterexample: Space shuttle astronauts have

thousands of extra responsibilities because it’s

safer than changing code

11/6/2007 5

Kinds of change

• Corrective maintenance

– Fixing bugs in released code

• Adaptive maintenance

– Porting to new hardware or software platform

• Perfective maintenance

– Providing new functions

• Oft-cited data from Lientz and Swanson (1980,
focused on IT systems – about 17%, 18%, 65%
(respectively)

• Modern data? There is some … not too different

11/6/2007 6

High cost, long time

• Gold’s 1973 study showed the fraction of

programming effort spent in maintenance

• For example, 22% of the organizations spent 30% of

their effort in maintenance

11/6/2007 7

Total life cycle cost

• Lientz and Swanson determined that at least 50% of

the total life cycle cost is in maintenance

• There are several other studies that are reasonably

consistent

• General belief is that maintenance accounts for

somewhere between 50-75% of total life cycle costs

11/6/2007 8

Open question

• How much maintenance cost is ―reasonable?‖

– Corrective maintenance costs are ostensibly not

―reasonable‖ (OK, this is easy)

– How much adaptive maintenance cost is

―reasonable‖?

– How much perfective maintenance cost is

―reasonable‖?

• Measuring ―reasonable‖ costs in terms of percentage

of life cycle costs doesn’t make sense

11/6/2007 9

High-level answer

• For perfective maintenance, the objective should be

for the cost of the change in the implementation to be

proportional to the cost of the change in the

specification (design)

– Ex: Allowing dates for the year 2000 is (at most) a

small specification change

– Ex: Adding call forwarding is a more complicated

specification change

– Ex: Converting a compiler into an ATM machine is

…

11/6/2007 10

(Common) Observations

• Maintainers often get less respect than developers

• Maintenance is generally assigned to the least

experienced programmers

• Software structure degrades over time

• Documentation is often poor and is often inconsistent

with the code

• Is there any relationship between these?

11/6/2007 11

Laws of Program Evolution
Lehman & Belady

• Law of continuing change

• ―A large program that is used

undergoes continuing

change or becomes

progressively less useful.‖

– Analogies to biological

evolution have been

made; the rate of change

in software is far faster

• P-type programs

– Well-defined, precisely

specified

– The challenge is efficient

implementation

– Ex: sort

• E-type programs

– Ill-defined, fit into an ever-

changing environment

– The challenge is

managing change

• Also, S-type programs

– Ex: chess

11/6/2007 12

Law of increasing complexity

• ―As a large program is continuously changed, its

complexity, which reflects deteriorating structure,

increases unless work is done to maintain or reduce

it.‖

– Complexity, in part, is relative to a programmer’s

knowledge of a system

• Novices vs. experts doing maintenance

– Cleaning up structure is done relatively infrequently

• Even with the recent interest in refactoring, this

seems true. Why?

11/6/2007 13

Reprise

• The claim is that if you measure any reasonable

metric of the system

– Modules modified, modules created, modules

handled, subsystems modified, …

• and then plot those against time (or releases)

• Then you get highly similar curves regardless of the

actual software system

• A zillion graphs on

http://www.doc.ic.ac.uk/~mml/feast1/

11/6/2007 14

Statistically regular growth

• ―Measures of [growth] are cyclically self-regulating

with statistically determinable trends and invariances.‖

– (You can run but you can’t hide)

• There’s a feedback loop

– Based on data from OS/360 and some other

systems

– Ex: Content in releases decreases, or time

between releases increases

• Is this related to Brooks’ observation that adding

people to a late project makes it later?

11/6/2007 15

And two others

• ―The global activity rate in a large programming

project is invariant.‖

• ―For reliable, planned evolution, a large program

undergoing change must be made available for

regular user execution at maximum intervals

determined by its net growth.‖

– This is related to ―daily builds‖

11/6/2007 16

Open question

• Are these ―laws‖ of Belady and Lehman actually

inviolable laws?

• Could they be overcome with tools, education,

discipline, etc.?

• Could their constants be fundamentally improved to

give significant improvements in productivity?

– Greenspan and others have claimed that IT has

fundamentally changed the productivity of the

economy: ―The synergistic effect of new technology

is an important factor underlying improvements in

productivity.‖

11/6/2007 17

Approaches to reducing cost

• Design for change (proactive)

– Information hiding, layering, open implementation,

aspect-oriented programming, etc.

• Tools to support change (reactive)

– grep, etc.

– Reverse engineering, program

11/6/2007 18

Approaches to reducing cost

• Improved documentation (proactive)

– Discipline, stylized approaches

– Parnas is pushing this very hard, using a tabular

form of specifications

– Literate programming

• Reducing bugs (proactive)

– Many techniques, some covered later in the

quarter

• Increasing correctness of specifications (proactive)

• Others?

11/6/2007 19

Program understanding & comprehension

• Definition: The task of building mental models of the

underlying software at various abstraction levels,

ranging from models of the code itself to ones of the

underlying application domain, for maintenance,

evolution, and re-engineering purposes [H. Müller]

11/6/2007 20

What do you do?

11/6/2007 21

Various strategies

• Top-down

– Try to map from the application domain to the code

• Bottom-up

– Try to map from the code to the application domain

• Opportunistic: mix of top-down and bottom-up

• I’m not a fan of these distinctions, since it has to be

opportunistic in practice

– Perhaps with a really rare exception

11/6/2007 22

Did you try to understand?

• ―The ultimate goal of research in program

understanding is to improve the process of

comprehending programs, whether by improving

documentation, designing better programming

languages, or building automated support tools.‖

—Clayton, Rugaber, Wills

• To me, this definition (and many, many similar ones)

miss a key point: What is the programmer’s task?

• Furthermore, most good programmers seem to be

good at knowing what they need to know and what

they don’t need to know

11/6/2007 23

A scenario

• I’m about to walk through a simple scenario or two

• The goal isn’t to show you ―how‖ to evolve software

• Rather, the goal is to try to increase some of the ways

in which you think during software evolution

11/6/2007 24

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

A view of maintenance

When assigned a task to modify

an existing software system, how

does a software engineer choose

to proceed?

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned

Task

11/6/2007 25

Sample (simple) task

• You are asked to update an application in response to
a change in a library function

• The original library function is
– assign(char* to, char* from, int cnt = NCNT)

– Copy cnt characters from to into from

• The new library function is
– assign(char* to, char* from, int pos,

int cnt = NCNT)

– Copy cnt characters starting at pos from to into
from

• How would you make this change?

11/6/2007 26

Recap: example

• What information did you need?

• What information was available?

• What tools produced the information?

– Did you think about other pertinent tools?

• How accurate was the information?

– Any false information? Any missing true

information?

• How did you view and use the information?

• Can you imagine other useful tools?

11/6/2007 27

Source models

• Reasoning about a maintenance task is often done in
terms of a model of the source code

–Smaller than the source, more focused than the
source

• Such a source model captures one or more relations
found in the system’s artifacts

Document

Document

Document

Document

Document

Document

(a,b)

(c,d)

(c,f)

(a,c)

...

(d,f)

(g,h)

Extraction Tool

11/6/2007 28

Example source models

• A calls graph

– Which functions call which other functions?

• An inheritance hierarchy

– Which classes inherit from which other classes?

• A global variable cross-reference

– Which functions reference which globals?

• A lexical-match model

– Which source lines contain a given string?

• A def-use model

– Which variable definitions are used at which use

sites?

11/6/2007 29

Combining source models

• Source models may be produced by combining other

source models using simple relational operations; for

example,

– Extract a source model indicating which functions

reference which global variables

– Extract a source model indicating which functions

appear in which modules

– Join these two source models to produce a source

model of modules referencing globals

11/6/2007 30

Extracting source models

• Source models are extracted using tools

• Any source model can be extracted in multiple ways

– That is, more than one tool can produce a given

kind of source model

• The tools are sometimes off-the-shelf, sometimes

hand-crafted, sometimes customized

11/6/2007 31

Program databases

• There are many projects in which a program database

is built, representing source models of a program

• They vary in many significant ways

– The data model used (relational, object-oriented)

– The granularity of information

• Per procedure, per statement, etc.

– Support for creating new source models

• Operations on the database, entirely new ones

– Programming languages supported

11/6/2007 32

Three old examples

• CIA/CIA++, ATT Research (Chen et al.)

– Relational, C/C++

– http://www.research.att.com/sw/tools/reuse/

– CIAO, a web-based front-end for program database access

• Desert, Brown University (Reiss)

– Uses Fragment integration

• Preserves original files, with references into them

– http://www.cs.brown.edu/software/desert/

– Uses FrameMaker as the editing/viewing engine

• Rigi (support for reverse engineering)

– http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml

11/6/2007 33

What tools do you use now?

• What do they provide?

• What don’t they provide?

11/6/2007 34

Information characteristics

ideal conservative

optimistic approximate

no false positives false positives
n
o
 f

a
ls

e

n
e
g
a
ti
v
e
s

fa
ls

e

n
e
g
a
ti
v
e
s

11/6/2007 35

Ideal source models

• It would be best if every source model extracted was

perfect: all entries are true and no true entries are

omitted

• For some source models, this is possible

– Inheritance, defined functions, #include structure,

• For some source models, achieving the ideal may be

difficult in practice

– Ex: computational time is prohibitive in practice

• For many other interesting source models, this is not

possible

– Ideal call graphs, for example, are uncomputable

11/6/2007 36

Conservative source models

• These include all true information and maybe some

false information, too

• Frequently used in compiler optimization,

parallelization, in programming language type

inference, etc.

– Ex: never misidentify a call that can be made or

else a compiler may translate improperly

– Ex: never misidentify an expression in a statically

typed programming language

11/6/2007 37

Optimistic source models

• These include only truth but may omit some true

information

• Often come from dynamic extraction

• Ex: In white-box code coverage in testing

– Indicating which statements have been executed

by the selected test cases

– Others statements may be executable with other

test cases

11/6/2007 38

Approximate source models

• May include some false information and may omit

some true information

• These source models can be useful for maintenance

tasks

– Especially useful when a human engineer is using

the source model, since humans deal well with

approximation

– It’s ―just like the web!‖

• Turns out many tools produce approximate source

models (more on this later)

11/6/2007 39

Static vs. dynamic

• Source model extractors can work

– statically, directly on the system’s artifacts, or

– dynamically, on the execution of the system, or

– a combination of both

• Ex:

– A call graph can be extracted statically by

analyzing the system’s source code or can be

extracted dynamically by profiling the system’s

execution

11/6/2007 40

Must iterate

• Usually, the engineer must iterate to get a source

model that is ―good enough‖ for the assigned task

• Often done by inspecting extracted source models

and refining extraction tools

• May add and combine source models, too

11/6/2007 41

Another maintenance task

• Given a software system, rename a given variable
throughout the system

– Ex: angle should become diffraction

– Probably in preparation for a larger task

• Semantics must be preserved

• This is a task that is done infrequently

– Without it, the software structure degrades more
and more

11/6/2007 42

What source model?

• Our preferred source model for the task would be a

list of lines (probably organized by file) that reference

the variable angle

• A static extraction tool makes the most sense

– Dynamic references aren’t especially pertinent for

this task

11/6/2007 43

Start by searching

• Let’s start with grep, the most likely tool for
extracting the desired source model

• The most obvious thing to do is to search for
the old identifier in all of the system’s files

– grep angle *

11/6/2007 44

What files to search?

• It’s hard to determine which files to search

– Multiple and recursive directory structures

– Many types of files

• Object code? Documentation? (ASCII vs. non-

ASCII?) Files generated by other programs

(such as yacc)? Makefiles?

– Conditional compilation? Other problems?

• Care must be taken to avoid false negatives arising

from files that are missing

11/6/2007 45

False positives

• grep angle [system’s files]

• There are likely to be a number of spurious
matches
– …triangle…, …quadrangle…

– /* I could strangle this programmer! */

– /* Supports the small planetary rovers

presented by Angle & Brooks (IROS „90) */

– printf(“Now play the Star Spangled Banner”);

• Be careful about using agrep!

11/6/2007 46

More false negatives

• Some languages allow identifiers to be split across

line boundaries

– Cobol, Fortran, PL/I, etc.

– This leads to potential false negatives

• Preprocessing can hurt, too
– #define deflection angle

...

deflection = sin(theta);

11/6/2007 47

It’s not just syntax

• It is also important to check, before applying the

change, that the new variable name (degree) is not in

conflict anywhere in the program

– The problems in searching apply here, too

– Nested scopes introduce additional complications

11/6/2007 48

Tools vs. task

• In this case, grep is a lexical tool but the renaming

task is a semantic one

– Mismatch with syntactic tools, too

• Mismatches are common and not at all unreasonable

– But it does introduce added obligations on the

maintenance engineer

– Must be especially careful in extracting and then

using the approximate source model

11/6/2007 49

Finding vs. updating

• Even after you have extracted a source model that

identifies all of (or most of) the lines that need to be

changed, you have to change them

• Global replacement of strings is at best dangerous

• Manually walking through each site is time-

consuming, tedious, and error-prone

11/6/2007 50

Downstream consequences

• After extracting a good source model by iterating, the

engineer can apply the renaming to the identified lines

of code

• However, since the source model is approximate,

regression testing (and/or other testing regimens)

should be applied

11/6/2007 51

An alternative approach

• Griswold developed a meaning-preserving program

restructuring tool that can help

• For a limited set of transformations, the engineer

applies a local change and the tool applies global

compensating changes that maintain the program’s

meaning

– Or else the change is not applied

– Reduces errors and tedium when successful

11/6/2007 52

But

• The tool requires significant infrastructure

– Abstract syntax trees, control flow graphs, program

dependence graphs, etc.

• The technology OK for small programs

– Downstream testing isn’t needed

– No searching is needed

• But it does not scale directly in terms of either

computation size or space

11/6/2007 53

Recap

• ―There is more than one way to skin a cat‖

– Even when it’s a tiger

• The engineer must decide on a source model needed

to support a selected approach

• The engineer must be aware of the kind of source

model extracted by the tools at hand

• The engineer must iterate the source model as

needed for the given task

• Even if this is not conscious nor explicit

11/6/2007 54

Build up idioms

• Handling each task independently is hard

• You can build up some more common idiomatic

approaches

– Some tasks, perhaps renaming, are often part of

larger tasks and may apply frequently

– Also internalize source models, tools, etc. and what

they are (and are not) good at

• But don’t constrain yourself to only what your usual

tools are good for

11/6/2007 55

Source model accuracy

• This is important for programmers to understand

• Little focus is given to the issue

11/6/2007 56

Call graph extraction tools (C)

• Two basic categories: lexical or syntactic

– lexical

• e.g., awk, mkfunctmap, lexical source model

extraction (LSME)

• likely produce an approximate source model

• extract calls across configurations

• can extract even if we can’t compile

• typically fast

11/6/2007 57

A CGE experiment

• To investigate several call graph extractors for C, we

ran a simple experiment

– For several applications, extract call graphs using

several extractors

– Applications: mapmaker, mosaic, gcc

– Extractors: CIA, rigiparse, Field, cflow, mkfunctmap

11/6/2007 58

Experimental results

• Quantitative

– pairwise comparisons between the extracted call

graphs

• Qualitative

– sampling of discrepancies

• Analysis

– what can we learn about call graph extractors

(especially, the design space)?

11/6/2007 59

Pairwise comparison (example)

• CIA vs. Field for Mosaic (4258 calls reported)

– CIA found about 89% of the calls that Field found

– Field did not find about 5% of the references CIA

found

– CIA did not find about 12% of the calls Field found

11/6/2007 60

Quantitative Results

• No two tools extracted the same calls for any of the

three programs

• In several cases, tools extracted large sets of non-

overlapping calls

• For each program, the extractor that found the most

calls varied (but remember, more isn’t necessarily

better)

• Can’t determine the relationship to the ideal

11/6/2007 61

Qualitative results

• Sampled elements to identify false positives and false

negatives

• Mapped the tuples back to the source code and

performed manual analysis by inspection

• Every extractor produced some false positives and

some false negatives

11/6/2007 62

Call graph characterization

ideal

none

conservative

compilers

optimistic

profilers

approximate

software

engineering tools

no false positives false positives
n
o
 f
a
ls

e
n
e
g

a
ti
v
e

s
fa

ls
e

n
e
g
a
ti
v
e

s

11/6/2007 63

In other words, caveat emptor

11/6/2007 64

Taxonomy: reverse/reengineering
Chikofsky and Cross

• Design recovery is a subset of reverse engineering

• The objective of design recovery is to discover

designs latent in the software

– These may not be the original designs, even if

there were any explicit ones

– They are generally recovered independent of the

task faced by the developer

• It’s a way harder problem than design itself

11/6/2007 65

Restructuring

• One taxonomy activity is restructuring

• Why don’t people restructure as much as we’d like…?

– Doesn’t make money now

– Introduces new bugs

– Decreases understanding

– Political pressures

– Who wants to do it?

– Hard to predict lifetime costs & benefits

11/6/2007 66

Griswold’s 1st approach

• Griswold developed an approach to meaning-

preserving restructuring

• Make a local change

– The tool finds global, compensating changes that

ensure that the meaning of the program is

preserved

• What does it mean for two programs to have the

same meaning?

– If it cannot find these, it aborts the local change

11/6/2007 67

Simple example

• Swap order of formal

parameters

• It’s not a local change nor a

syntactic change

• It requires semantic

knowledge about the

programming language

• Griswold uses a variant of

the sequence-congruence

theorem [Yang] for

equivalence

– Based on PDGs (program

dependence graphs)

• It’s an O(1) tool

11/6/2007 68

Limited power

• The actual tool and approach has limited power

• Can help translate one of Parnas’ KWIC

decompositions to the other

• Too limited to be useful in practice

– PDGs are limiting

• Big and expensive to manipulate

• Difficult to handle in the face of multiple files,

etc.

• May encourage systematic restructuring in some

cases

11/6/2007 69

Star diagrams [Griswold et al.]

• Meaning-preserving restructuring isn’t going to work

on a large scale

• But sometimes significant restructuring is still

desirable

• Instead provide a tool (star diagrams) to

– record restructuring plans

– hide unnecessary details

• Some modest studies on programs of 20-70KLOC

11/6/2007 70

A star diagram

11/6/2007 71

Interpreting a star diagram

• The root (far left) represents all the instances of the

variable to be encapsulated

• The children of a node represent the operations and

declarations directly referencing that variable

• Stacked nodes indicate that two or more pieces of

code correspond to (perhaps) the same computation

• The children in the last level (parallelograms)

represent the functions that contain these

computations

11/6/2007 72

After some changes

11/6/2007 73

Evaluation

• Compared small teams of programmers on small

programs

– Used a variety of techniques, including videotape

– Compared to vi/grep/etc.

• Nothing conclusive, but some interesting observations

including

– The teams with standard tools adopted more

complicated strategies for handling completeness

and consistency

11/6/2007 74

My view

• Star diagrams may not be ―the‖ answer

• But I like the idea that they encourage people

– To think clearly about a maintenance task,

reducing the chances of an ad hoc approach

– They help track mundane aspects of the task,

freeing the programmer to work on more complex

issues

– To focus on the source code

• Murphy/Kersten and Mylyn and tasktop.com are of the

same flavor….

11/6/2007 75

When assigned a task to modify

an existing software system,

how does a software engineer

choose to proceed?

A view of maintenance

When assigned a task to modify

an existing software system, how

does a software engineer choose

to proceed?

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Assigned

Task

11/6/2007 76

A task: isolating a subsystem

• Many maintenance tasks require identifying and isolating

functionality within the source

– sometimes to extract the subsystem

– sometimes to replace the subsystem

11/6/2007 77

Mosaic

• The task is to isolate and replace

the TCP/IP subsystem that interacts

with the network with a new

corporate standard interface

• First step in task is to estimate the

cost (difficulty)

11/6/2007 78

Mosaic source code

• After some configuration and perusal, determine the source of interest

is divided among 4 directories with 157 C header and source files

• Over 33,000 lines of non-commented, non-blank source lines

11/6/2007 79

Some initial analysis

• The names of the directories suggest the software is broken into:

– code to interface with the X window system

– code to interpret HTML

– two other subsystems to deal with the world-wide-web and
the application (although the meanings of these is not clear)

11/6/2007 80

How to proceed?

• What source model would be useful?

– calls between functions (particularly calls to Unix TCP/IP
library)

• How do we get this source model?

– statically with a tool that analyzes the source or dynamically
using a profiling tool

– these differ in information characterization produced

• False positives, false negatives, etc.

11/6/2007 81

More...

• What we have

– approximate call and global variable reference information

• What we want

– increase confidence in source model

• Action:

– collect dynamic call information to augment source model

11/6/2007 82

Augment with dynamic calls

• Compile Mosaic with profiling support

• Run with a variety of test paths and collect profile information

• Extract call graph source model from profiler output

– 1872 calls

– 25% overlap with CIA

– 49% of calls reported by gprof not reported by CIA

11/6/2007 83

Are we done?

• We are still left with a fundamental problem: how to deal with one
or more ―large‖ source models?

– Mosaic source model:
static function references (CIA) 3966
static function-global var refs (CIA) 541
dynamic function calls (gprof) 1872

Total 6379

11/6/2007 84

One approach

•Use a query tool against the source model(s)

–maybe grep?

–maybe source model specific tool?

•As necessary, consult source code
–―It’s the source, Luke.‖

–Mark Weiser. Source Code. IEEE Computer 20,11
(November 1987)

11/6/2007 85

Other approaches

• Visualization

• Reverse engineering

• Summarization

11/6/2007 86

Visualization

• e.g., Field, Plum, Imagix
4D, McCabe, etc.
(Field’s flowview is used
above and on the
next few slides...)

• Note: several of these are
commercial products

11/6/2007 87

Visualization...

11/6/2007 88

Visualization...

11/6/2007 89

Visualization...

• Provides a ―direct‖ view of the source model

• View often contains too much information

– Use elision (…)

– With elision you describe what you are not

interested in, as opposed to what you are

interested in

11/6/2007 90

Reverse engineering

• e.g., Rigi, various clustering algorithms

(Rigi is used above)

11/6/2007 91

Reverse engineering...

11/6/2007 92

Clustering

• The basic idea is to take one or more source models

of the code and find appropriate clusters that might

indicate ―good‖ modules

• Coupling and cohesion, of various definitions, are at

the heart of most clustering approaches

• Many different algorithms

11/6/2007 93

Rigi’s approach

• Extract source models (they call them resource

relations)

• Build edge-weighted resource flow graphs

– Discrete sets on the edges, representing the

resources that flow from source to sink

• Compose these to represent subsystems

– Looking for strong cohesion, weak coupling

• The papers define interconnection strength and

similarity measures (with tunable thresholds)

11/6/2007 94

Math. concept analysis

• Define relationships between (for instance) functions

and global variables [Snelting et al.]

• Compute a concept lattice capturing the structure

– ―Clean‖ lattices = nice structure

– ―ugly‖ ones = bad structure

11/6/2007 95

An aerodynamics program

• 106KLOC Fortran

• 20 years old

• 317 subroutines

• 492 global variables

• 46 COMMON
blocks

11/6/2007 96

Other concept lattice uses

• File and version dependences across C programs
(using the preprocessor)

• Reorganizing class libraries

11/6/2007 97

Dominator clustering

• Girard & Koschke

• Based on call graphs

• Collapses using a domination
relationship

• Heuristics for putting
variables into clusters

11/6/2007 98

Aero program

• Rigid body simulation; 31KLOC of C code; 36 files; 57

user-defined types; 480 global variables; 488 user-defined

routines

11/6/2007 99

Other clustering

• Schwanke

– Clustering with automatic tuning of thresholds

– Data and/or control oriented

– Evaluated on reasonable sized programs

• Basili and Hutchens

– Data oriented

11/6/2007 100

Reverse engineering recap

• Generally produces a higher-level view that is consistent with
source

– Like visualization, can produce a ―precise‖ view

– Although this might be a precise view of an approximate
source model

• Sometimes view still contains too much information leading again
to the use of techniques like elision

– May end up with ―optimistic‖ view

11/6/2007 101

More recap

• Automatic clustering approaches must try to produce ―the‖ design

– One design fits all

• User-driven clustering may get a good result

– May take significant work (which may be unavoidable)

– Replaying this effort may be hard

• Tunable clustering approaches may be hard to tune; unclear how
well automatic tuning works

11/6/2007 102

Summarization

• e.g., software reflexion models

11/6/2007 103

Summarization...

• A map file specifies the correspondence between parts
of the source model and parts of the high-level model

[file=HTTCP mapTo=TCPIP]

[file=^SGML mapTo=HTML]

[function=socket mapTo=TCPIP]

[file=accept mapTo=TCPIP]

[file=cci mapTo=TCPIP]

[function=connect mapTo=TCPIP]

[file=Xm mapTo=Window]

[file=^HT mapTo=HTML]

[function=.* mapTo=GUI]

11/6/2007 104

Summarization...

11/6/2007 105

Summarization...

• Condense (some or all) information in terms of a high-

level view quickly

– In contrast to visualization and reverse

engineering, produce an ―approximate‖ view

– Iteration can be used to move towards a ―precise‖

view

• Some evidence that it scales effectively

• May be difficult to assess the degree of approximation

11/6/2007 106

Case study: A task on Excel

• A series of approximate tools were used by a Microsoft engineer
to perform an experimental reengineering task on Excel

• The task involved the identification and extraction of components
from Excel

• Excel (then) comprised about 1.2 million lines of C source

– About 15,000 functions spread over ~400 files

11/6/2007 107

The process used

11/6/2007 108

An initial Reflexion Model

• The initial Reflexion

Model computed had 15

convergences, 83,

divergences, and 4

absences

• It summarized 61% of

calls in source model

11/6/2007 109

An iterative process

• Over a 4+ week period

• Investigate an arc

• Refine the map

– Eventually over 1000 entries

• Document exceptions

• Augment the source model

– Eventually, 119,637 interactions

11/6/2007 110

A refined Reflexion Model

• A later Reflexion Model

summarized 99% of

131,042 call and data

interactions

• This approximate view of

approximate information

was used to reason

about, plan and automate

portions of the task

11/6/2007 111

Results

• Microsoft engineer judged the use of the Reflexion

Model technique successful in helping to understand

the system structure and source code

―Definitely confirmed suspicions about the structure of

Excel. Further, it allowed me to pinpoint the

deviations. It is very easy to ignore stuff that is not

interesting and thereby focus on the part of Excel that

I want to know more about.‖ — Microsoft A.B.C.

(anonymous by choice) engineer

11/6/2007 112

Open questions

• How stable is the mapping as the source code

changes?

• Should reflexion models allow comparisons separated

by the type of the source model entries?

• ...

11/6/2007 113

Which ideas are important? (I think…)

• Source code, source code, source code

• Task, task, task

– The programmer decides where to increase the focus, not the

tool

• Iterative, pretty fast

• Doesn’t require changing other tools nor standard process being

used

• Text representation of intermediate files

• A computation that the programmer fundamentally understands

– Indeed, could do manually, if there was only enough time

• Graphical may be important, but also may be overrated in some

situations

11/6/2007 114

SeeSoft: Eick et al.

• Visualize text files by

– mapping each line into a thin row

– colored according to a statistic of interest

• Focus on source code, with sample statistics including

– age, programmer, or functionality of each line

– Data extracted from version control systems, static

analysis and profiling

• User can manipulate this representation to find

interesting patterns in software

• Applications include data discovery, project

management, code tuning and analysis of

development methodologies

11/6/2007 115

Code age:
newest code in red, oldest in blue

11/6/2007 116

Execution profile:

red shows hot spots, non-executed lines are gray/black

11/6/2007 117

SeeSoft

• SeeSoft seems excellent for building important,

qualitative understanding of some aspects of source

code

• It also links in effectively with the underlying source

code

• It is flexible in terms of what statistics are viewed

– It’s not entirely clear how much work is needed to

add a new statistic

11/6/2007 118

Summary

• Evolution is done in a relatively ad hoc way

– Much more ad hoc than design, I think

• Putting some intellectual structure on the problem

might help

– Sometimes tools can help with this structure, but it

is often the intellectual structure that is more critical

11/6/2007 119

Why is there a lack of tools to support

evolution?

• Intellectual tools

• Actual tools

• Opportunities?

